Euler Sums and Contour Integral Representations

نویسندگان

  • Philippe Flajolet
  • Bruno Salvy
چکیده

Work supported in part by the Long Term Research Project Alcom-IT (# 20244) of the European Union. This paper develops an approach to the evaluation of Euler sums that involve harmonic numbers, either linearly or nonlinearly. We give explicit formulæ for several classes of Euler sums in terms of Riemann zeta values. The approach is based on simple contour integral representations and residue computations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler Sums and Contour Integral Representationsphilippe Flajolet

This paper develops an approach to the evaluation of Euler sums involving harmonic numbers either linearly or nonlinearly. We give explicit formull for certain classes of Euler sums in terms of values of the Riemann zeta function at positive integers. The approach is based on simple contour integral representations and residue computations. Sommes d'Euler et repr esentations int egrales R esum ...

متن کامل

Harmonic number sums in closed form

We extend some results of Euler related sums. Integral and closed form representation of sums with products of harmonic numbers and cubed binomial coefficients are developed in terms of Polygamma functions. The given representations are new. AMS subject classifications: Primary 11B65; Secondary 33C20

متن کامل

On Stirling Numbers and Euler Sums

In this paper, we propose the another yet generalization of Stirling numbers of the rst kind for non-integer values of their arguments. We discuss the analytic representations of Stirling numbers through harmonic numbers, the generalized hypergeometric function and the logarithmic beta integral. We present then in nite series involving Stirling numbers and demonstrate how they are related to Eu...

متن کامل

On one dimensional digamma and polygamma series related to the evaluation of Feynman diagrams

We consider summations over digamma and polygamma functions, often with summands of the form (±1)nψ(n + p/q)/nr and (±1)nψ(m)(n + p/q)/nr, where m, p, q, and r are positive integers. We develop novel general integral representations and present explicit examples. Special cases of the sums reduce to known linear Euler sums. The sums of interest find application in quantum field theory, including...

متن کامل

Closed-form summation of two families of finite tangent sums

In our recent paper with Srivastava [D. Cvijović, H.M. Srivastava, Summation of a family of finite secant sums, Appl. Math. Comput. 190 (2007) 590–598] a remarkably general family of the finite secant sums was summed in closed form by choosing a particularly convenient integration contour and making use of the calculus of residues. In this sequel, we show that this procedure can be extended and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1998